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ABSTRACT 

p703 
The results are presented of a preliminary investigation to 

determine the nature of potential hazards associated with the 

impingement of the exhaust gages of the Manned Flying System (MFS) 

on a dust - and/or debris-covered lunar surface. An engineering model 

is established based on the results of preceding investigations. The 

behavior of individual particles of dust, set in motion by jet 

impingement, is predicted. The results indicate that there is a 
* 

possibility of dust/debris directly striking the MFS only at very 

low altitudes (less than six feet) with impingement craters of small 

radii (less than 4.5 feet). The distance out to which particles are 

thrown is considerable, however, ranging as high as 1200 milaS, and the 

possibility does exist that particles may strike personnel or equipment 

on the lunar surface in the vicinity of the landing site of the MFS. 

The possibility also exist8 that, during the descent or ascent of the 

MFS in the proximity of  sheer, vertical surfaces, projected particles 

may ricochet off such surfaces end then strike the MFS. 
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FOREWORD 

The inves t igac ion  descr ibed  i n  t h i s  r e p o r t  w a s  reques ted  by 

M r .  Lynn L. Bradford of t h e  Systems Concepts Planning Of f i ce ,  Aero- 

Astrodynamics Laboratory,  George C. Marshall  Space F l i g h t  Center. 

The s tudy w a s  c a r r i e d  out  by M r .  F. B. Tatom, M r .  Robert L. S t a rk ,  

D r .  H.  W. Hsu, and M r .  L. M. Bhal la  of t he  H u n t s v i l l e  Department of 

Northrop Space Labora to r i e s ,  under Contract  No. NAS8-20082, Appendix 

F-1,  Schedule Order No. 4 ,  Technical  D i r e c t i v e  No. 4. Work commenced 

on 20 Ju ly  and ended on 4 October 1965 wi th  a t o t a l  of 6 man-weeks 

exp ended . 
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SUMMARY 

I .  

A preliminary study has been conducted to determine the hazards 

associated with the impingement of the exhaust gases of the Manned 

Flying Syscem (MFS) on a dust-/debris-covered lunar surface. The 

study consisted of a survey of previous pertinent investigations, 

and the development and application of a simplified engineering model 

to predict the impingement and entrainment phenomena. 

Three potential hazards are discussed: (1) reduced visibility 

during ascent or descent, (2 )  the striking of the MFS by lunar dust 

o r  debris, and (3)  the striking of personnel avd equipment on the 

lunar surface by lunar dust/debris. 

latter two hazards. 

model iqdicate that the possibility of particles directly striking 

the ME'S only occurs at very low altitudes with small impingement 

Major emphasis was placed on the 

The results obtained from applying the engineering 

crater radii. There is, however, also the podsibility of particles 

ricocheting of f  of sheer vertical portions of the lunar terrain and 

then striking the MFS from above or from the side. Finally, there 

exists a region, extending out as far as 1200 miles from the impingement 

site, in which lunar dust or debris may rain down on personnel and 

equipment on the lunar surface. 

vi i 



1.0 INTRODUCTION 

There i s  a s t rong  p o s s i b i l i t y  t h a t  t h e  luna r  s u r f a c e  is  covered 

w i t h  a l a y e r  of dus t  and/or  d e b r i s  ranging i n  depth from one t o  twenty 

f e e t ,  The exhaust gases  from the'Manned F ly ing  System, during descent  

t o  a previous ly  undis turbed  po r t ion  of t h e  l u n a r  su r face ,  would impinge 

upon such a dus t  l aye r .  The e f f e c t s  of t h i s  impingement could conceiv- 

a b l y  r ep resen t  a hazard t o  t h e  a s t ronau t s  aboard t h e  MFS. Thus it i s  

important t o  determine t h e  exac t  na ture  and magnitude of t h e  impinge- 

ment of t h e  rocke t  exhaust gases  on a dust-covered sur face ,  and a l s o  

t h e  subsequent behavior of dus t  or  d e b r i s  set  i n  motion by such 

imp ingement . 
A number of i n v e s t i g a t i o n s  ( r e f s .  1 through 8) have been conducted 

which were concerned wi th  t h e  problem of j e t  impingement on a dus t -  

covered su r face  i n  a vacuum. Most of t h e s e  ( r e f s .  1, 2, 3, 6 ,  7 ,  and 8) 

were p r i m a r i l y  experimental  i n  nature .  

i n d i c a t e  t h a t  a symmetrical crater w i l l  be formed by t h e  j e t  impingement. 

Dust and d e b r i s  w i l l  be p ro jec t ed  outward from t h i s  c r a t e r  forming a 

c loud  composed of p a r t i c l e s  of var ious  sizes. 

of  a n  atmosphere, t h e  ind iv idua l  p a r t i c l e s  w i l l  r a p i d l y  s e t t l e  ou t  

and t h e  cloud w i l l  t hus  d i s s i p a t e .  V i s i b i l i t y  i n  t h e  v i c i n i t y  of t h e  

p o i n t  of impingement w i l l  be a f f ec t ed ,  e s p e c i a l l y  during t h e  l as t  few 

seconds of descent  of  t h e  vehic le .  

The r e s u l t s  ob ta ined  g e n e r a l l y  

Because of t h e  absence 

Unfortunately,  due t o  t h e  number of parameters  involved i n  t h e  

phenomenon under cons idera t ion ,  experimental s t u d i e s  have no t  provided 

a means of p r e d i c t i n g  t h e  behavior of i nd iv idua l  b i t s  of dus t  or debr i s .  



Scaling of results have proven to be relatively unfruitful because of 

the complex nature of the impingement action. 

several analytical investigations (refs. 4 and 5) have been carried out. 

As is the case in most engineering research, each of these studies 

was based on a series of simplifying assumptions. These assumptions 

were generally necessary in order to keep the problem tractable under 

the state-of-the-art at the time of the investigations. The results 

obtained were in the form of rather complicated equations for predicting 

various important parameters relating to the formation of the impingement 

crater and the motion of dust and debris. A certain amount of correlation 

between theoretical predictions and experimental data was attempted but 

it is difficult to assess the success achieved in such correlation. 

To remedy this situation 

There exists a definite need for a careful evaluation of all 

available literature on this subject, and for the development of an 

analytical model which contains a minimum of restricting assumptions 

and which is generally applicable without the need for scaling para- 

meters or empirical constants. 

This report presents the results of a preliminary study by the 

Huntsville Department of Northrop Space Laboratories concerning the 

effects of the exhaust jet of the Manned Flying System impinging 

on a dust-covered lunar surface. Because of time and manpower 

limitations, no attempt was made to develop a general theory. Instead, 

all available relevant literature was reviewed and a simple engineering 

model was established. 

of dust and debris following impingement was determined. 

By means of this model the approximate behavior 
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2 .O TECHNICAL DEVELOPMENT 

2.1 Engineer ing Model 

The engineer ing  model chosen t o  desc r ibe  t h e  j e t  exhaust f low 

f i e l d ,  t h e  e ros ion ,  and t h e  subsequent t r a n s p o r t  o f  su r f ace  p a r t i c l e s ,  

is shown i n  Fig.  2-1. 

S ince  t h e  flow i s  hypersonic ,  it i s  undis turbed by t h e  presence 

of t h e  su r face  beneath t h e  v e h i c l e  u n t i l  it impinges on t h e  su r face ,  

where a shock yave, approximately p a r a l l e l  t o  t h e  s u r f a c e , i s  formed. 

On pass ing  through t h e  shock, t h e  gas  i s  d ive r t ed  t o  flow p r imar i ly  

i n  a r a d i a l  d i r e c t i o n  over  t h e  sur face .  

between t h e  s t rong  shock and t h e  su r face  near  t he  s t a g n a t i o n  poin t .  

t h e  r a d i u s ,  r, inc reases ,  t h e  flow behind t h e  shock aga in  becomes 

supersonic .  

A reg ion  of  subsonic  flow e x i s t s  

As 

The flow over  t h e  su r face  produces a su r face  shear ing  fo rce  which 

is t h e  primary f o r c e  tending t o  set t h e  dus t  p a r t i c l e s  i n  motion. The 

i n i t i a l  r e s i s t a n c e  t o  motion is the  s t a t i c  f r i c t i o n  f o r c e  of t h e  p a r t i c l e s .  

Dust movement w i l l  cbmmence when the su r face  shear ing  f o r c e  exceeds t h e  

s t a t i c  force .  

p r o f i l e  a l t e r s  t h e  gas  flow f i e l d  and t h e  imposed shear  d i s t r i b u t i o n  

Th i s  i n t e r a c t i o n  i s  such a s  t o  c r e a t e  an expanding reg ion  o f  e r o s i o n  

beneath t h e  veh ic l e .  

As e ros ion  t akes  p lace ,  t h e  change i n  t h e  su r face  

The e n t r a i n e d  p a r t i c l e s  w i l l  be d i r e c t e d  upward by impact w i th  t h e  

edge of t h i s  eroded region. The a c t u a l  pa th  of t h e s e  p a r t i c l e s  w i l l  

3 



p= 0 

FIGURE 2-1. ENGINEERING MODEL FOR JET IMPINGEMENT 
WITH DUST-COVERED SURFACE 
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depend upon t h e  d i s t a n c e  the  edge o f  t h e  eroded reg ion  is from t h e  

v e h i c l e  and upon t h e  mechanics of the  p a r t i c l e  c o l l i s i o n  wi th  t h i s  edge. 

A t h e o r e t i c a l  s tudy of t h e  descr ibed phenomena was attempted i n  

r e f .  4 a s  a l r eady  noted. The result of t h a t  s tudy was a series of 

complicated r e l a t i o n s h i p s  which depend upon such dus t  p r o p e r t i e s  a s  

p a r t i c l e  s i z e  and dens i ty ,  t h e  dust  cohesive s t r e n g t h ,  and the  roughness 

of t h e  luna r  sur face .  Information on t h e s e  luna r  dus t  p r o p e r t i e s  is 

obviously unavai lab le  a t  t h i s  time. For  t h i s  reason,  i n  t h i s  s tudy ,  

t h e  s i m p l i f i e d  engineer ing  model was used as  a b a s i s  f o r  a paramet r ic  

s tudy t o  b e t t e r  e s t a b l i s h  t h e  i n t e r e l a t i o n  between t h e  important 

va r i ab le s .  The problem was t r e a t e d  i n  two p a r t s :  f i r s t ,  t he  expansion 

of a j e t  i n t o  a vacuum and t h e  flow t h a t  ex is t s  between t h e  s t rong  

shock and t h e  f l a t  sur face ;  and second, t h e  behavior  of t h e  p a r t i c l e s  

due t o  t h e  j e t - s u r f a c e  In t e rac t ion .  

2.2 Exhaust Jet Impingement 

2.2.1 Emans lon  of a J e t  i n  a Vacuum 

The expansion of t h e  j e t  i n t o  t h e  zero ambient p re s su re  (vacuum) 

is unaf fec t ed  upstream of t h e  shock wave by t h e  ex i s t ence  of t h e  sur face .  

The c a l c u l a t i o n  of  a jet  expanding i n t o  a vacuum was accompllshed I n  

r e f .  9 by us ing  t h e  method of c h a r a c t e r i s t i c s  f o r  t h e  i s e n t r o p i c  and 

i n v i s c i d  flow of a p e r f e c t  gas. 

t h e  flow p a t t e r n  approaches source p o i n t  flow. 

It was shown t h a t  i n  t h e  f a r  f i e l d  

The e s s e n t i a l  cha rac t e r  of t h e  flow f i e l d  is descr ibed  q u a n t i t a t i v e l y  

i n  r e f .  4 by assuming a dens i ty  p r o f i l e  which v a r i e s  as ( C O S O ) ~  where 6 

5 



i s  t h e  angle measured f m m  t h e  v e r t i c a l  c e n t e r  l i n e  of t h e  j e t  

(F igure  2-21. The r e s u l t i n g  expres s ion  f o r  t h e  d e n s i t y ,  p ,  on a 

s p h e r i c a l  cap a t  a d i s t ance ,  R, from t h e  nozz le  e x i t  i s  w r i t t e n  

k -2 
- = -  P k R  (13 ( cose )  (upstream of shock) 

n 
2 'n 

where 

= g a s  dens i ty  a t  nozz le  e x i t  'n 

r = e x i t  r a d i u s  of nozz le  n 
2 

= Y ( V  - 1 )  Mn k 

'r = r a t i o  of s p e c i f i c  h e a t s  

M =Mach number a t  nozz le  e x i t .  n 

2.2.2 Flow Region Downstream of Shock 

The sur face  p re s su re ,  P, i s  found by cons ider ing  t h e  f l u x  of 

momentum toward t h e  su r face  ( r e fe rence  4 )  and is given  by 

where 

Pr = normal shock recovery p res su re .  

I n  p a r t i c u l a r ,  a t  t h e  s t a g n a t i o n  p o i n t  (where t h e  c e n t e r  l i n e  of 

t h e  exhaust flow meets t h e  s u r f a c e )  t h e  s t a g n a t i o n  p r e s s u r e ,  Ps' i s  

w r i t  t e n  

-2 h 
pr (F) k+2 p = -  

s 2  n 
(2 -3 )  

(2-1)  



FIGURE 2-2. JET EXHAUST COORDINATE SYSTEM 
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The temperature,  T, of t h e  f l u i d  near  t h e  surface a t  any r a d i a l  d i s t ance  

may be e s t a b l i s h e d  usdng 

- Y - 1  
T P Y - =  
TS S 

(2-4) 

where Ts i s  t h e  s t agna t ion  temperature which does not  change a c r o s s  

t h e  shock. Also, because t h e r e  i s  no h e a t  t r a n s f e r  ac ross  t h e  shock 

t h e  steady-flow energy equat ion  may be w r i t t e n  

2 U + 2c T = cons tan t  
P 

where 

U = v e l o c i t y  of t h e  gas  

c = s p e c i f i c  hea t  a t  cons tan t  p re s su re  
P 

t h e r e f o r e ,  

S u b s t i t u t i n g  Eqs. (2k2) through (2-4) i n t o  Eq. (2-6)  y i e l d s  f o r  Uc 

Uc2 = 2c T 
P S  

h2 
2 2  h +rc 

(2-5) 

where ec = the  va lue  of 0 corresponding t o  r . 
C 

Y 

The d e n s i t y  of t h e  f l u i d  a t  any r a d i a l  p o s i t i o n  downstream of t h e  

shock, based on t h e  assumption of a p e r f e c t  gas ,  can be c a l c u l a t e d  



from the relation 
I .  

where 

P = -  (downstream of shock) 
ROT 

R = Specific gas constant. 
0 

2.3 Dust/Debris Entrainment 

2.3 . 1 Velocity of Entrained Particles 

Each particle, once it breaks free of the lunar surface, is 

subjected to a drag force by the rocket exhaust. 

theoretical study combined with an analysis of motion pictures from 

reference 7, the most significant time period, during which the particle 

accelerate$. to some maximum velocity, Vd, occurs prior to the particle 

leaving the edge of the crater as shown in Figure 2-3. 

convenient to express the maximum velocity as 

Based on a preliminary 

Thus, it is 

where 

Ce = entrainment coefficient 

= gas density at crater edge 

Uc = gas velocity at crater edge. 

pC 

The entrainment coefficient is a dimensional parameter which is directly 

proportional to the drag coefficient and cross-sectional area of the 

particle, and the time interval, t e p  during which the drag force 

9 



FIGURE 2-3. ENTRAINMENT OF DUST AND D E B R E  



a c c e l e r a t e s  t h e  p a r t i c l e ,  and inve r se ly  p ropor t iona l  t o  t h e  mass of 

t h e  p a r t i c l e .  

i s t i c  v e l o c i t y  a s soc ia t ed  wi th  t h e  exhaust  impingement. 

speaking, t h e  p a r t i c l e  ve loc i ty ,  Vd, w i l l  occur  a s  t h e  pa r t i c l e  leaves  

t h e  t i p  of t h e  c r a t e r .  

The v e l o c i t y ,  Ucy is considered t o  be t h e  most cha rac t e r -  

Generally 

Thus, t h e  assumption is made t h a t  

Vd 2 uc 

The maximum value  of Ce is then  considered t o  be 

It i s  

p a r t i c l e s  i n  

and shown i n  

4 
C 

= P  e max C 

(2-10) 

(2-11)  

important t o  note  t h a t  t h e  v e l o c i t i e s  achieved by ind iv idua l  

t h e  experimental  i nves t iga t ion ,  descr ibed  i n  re ference  6 

r e fe rence  7,  were s u f f i c i e n t l y  l a r g e  t o  cause s e v e r a l  of 

t h e  i l l u m i n a t i o n  lamps used in t h a t  experiment t o  be smashed by impact 

of t h e  f l y i n g  debr i s .  

2.3.2 Path of Ent ra ined  P a r t i c l e s  

The assumption is made t h a t  t h e  drag f o r c e  a c t i n g  on t h e  p a r t i c l e ,  

fo l lowing  d e f l e c t i o n  a t  t h e  c r a t e r  l i p ,  is s m a l l  compared t o  t h a t  d rag  

f o r c e  occur r ing  p r i o r  t o  def lec t ion .  

f a c t  t h a t  t h e  dens i ty  of t h e  exhaust gases  should decrease r a p i d l y  

fo l lowing  d e f l e c t i o n  a t  t h e  c r a t e r  l i p .  With t h i s  assumption, i n  t h e  

immediate v i c i n i t y  of t h e  impingement crater,  t h e  behavior of t h e  

p a r t i c l e s  can be s a t i s f a c t o r i l y  descr ibed i n  a two-dimensional r ec t angu la r  

This assumption i s  based on t h e  

coord ina te  (x ,  y) system. The v e l o c i t y  components a r e  thus  

11 



v = Vd cos  ( 6 )  
X 

where 

V = v e l o c i t y  i n  t h e  x d i r e c t i o n  

V = v e l o c i t y  i n  t h e  y d i r e c t i o n  

gm 

t = t ime, 

X 

Y 
= a c c e l e r a t i o n  due t o  lunar  g r a v i t y  

and t h e  space coord ina tes  a r e  

(2-12) 

(2-13) 

(2-14) 

(2-15) 

The above equat ions  neg lec t  t h e  s p h e r i c a l  shape of t h e  moon 

which is reasonable  f o r  s h o r t  d i s t ances .  However, due t o  t h e  low luna r  

g r a v i t y  and t h e  p o s s i b i l i t y  of  h igh  p a r f i c l e  v e l o c i t i e s ,  t h e  d i s t a n c e  

o r  range which such p a r t i c l e s  may t ravel  may be l a rge .  Thus, f o r  

c a l c u l a t i n g  range, it i s  necessary  t o  use a more a c c u r a t e  dynamic 

a n a l y s i s ,  involving p a r t i c l e  behavior  i n  a c e n t r a l  f o r c e  f i e l d .  For 

t h i s  case, the  range, 6 ,  i s  

2 a r c o s  ( 
eR - m “13 

where 

1 2  

(2-16) 

2 2  2 Rm Vd cos  ( B) 
e =  

%l 

(2-17) 



wi th  

3 2 = l una r  g r a v i t a t i o n a l  constant  (.0173 10l6  f t  / s ec  ) 

= lunar  r a d i u s  (.570 e 10 f t ) .  

'm 

Rm 
7 

Notice should be taken t h a t  when 

e = l  

o r  

2 

= 2  Rm 'd 

an escape t r a j e c t o r y  i s  achieved. 

2.3.3 Maximum Radius of Impingement Crater 

The primary f o r c e  tending i n i t i a l l y  t o  set  a p a r t i c l e  i n  motion 

is a su r face  shear ing  fo rce ,  Fs, which can be expressed as 

F = T  A 
S s ef 

where 

T = shear  stress 

Aef = e f f e c t i v e  p a r t i c l e  area.  

S 

(2-19) 

The i n i t i a l  r e s i s t a n c e  t o  motion i s  t h e  s t a t i c  f r i c t i o n  f o r c e  of 

t h e  p a r t i c l e s ,  Ff ,  which may be w r i t t e n  

F f = f  o v g d d d m  (2-20) 

13  



where 

f = s t a t i c  f r i c t i o n  f a c t o r  of dus t  ( = t a n  8 )  d 
0 

d 

vd 

gm 

= dens i ty  of dus t  p a r t i c l e s  

=volume of a i nd iv idua l  p a r t i c l e  

= lunar  g r a v i t a t i o n a l  acce le ra t ion .  

Erosion of a p a r t i c u l a r  p o r t i o n  of a dust-covered s u r f a c e  i s  considered 

t o  occur  when F 

of t h e  lunar  su r face  c h a r a c t e r i s t i c s .  I f  t h e s e  are r e l a t i v e l y  cons tan t  

w i t h i n  a given reg ion ,  t h e  impingement e ros ion  p a t t e r n  w i l l  be s y m e t r i c a l  

and w i l l  extend o u t  t o  some maximum r a d i u s  rc beyond which Fs 

r a d i u s  i s  thus  t h e  maximum crater r a d i u s  f o r  a p a r t i c u l a r  j e t  exhaust  

a t  a f i x e d  he ight  above t h e  sur face .  For s p e c i f i c  va lues  of f ,  Pd, vd, 

and Aef a c r a t e r  r a d i u s  can be e s t a b l i s h e d  i f  t h e  shear  stress, ‘ts, can 

be ca l cu la t ed*  Based on a combination of t h e  t h e o r i e s  presented  i n  

r e fe rences  4 and 5, t h i s  shea r  stress can be e sp res sed  a s  

? Ff.  The f r i c t i o n  f o r c e ,  Ff, is a func t ion  s o l e l y  
S 

Ff. This  

h 4p c T 3’4 
T = (1.312) r F (K) ( 2 

’s Prh S 

where 

p = dens i ty  of gas  

p S  = s t agna t ion  d e n s i t y  of gas  

’r =normal  shock recovery dens i ty  of gas  

1 
2 -7 - ( 1  + V M 2 )  ( 1  +YMn - P O  

(2-21) 

= Chamber dens i ty  of gas  



Y = r a t i o  of s p e c i f i c  hea t  ( C  /C ) 

M = Mach number a t  nozzle  e x i t  

U = v i s c o s i t y  of  gas  

c 

T = temperature  of gas  

r = r a d i a l  pos i t i on .  

P V  

n 

= s p e c i f i c  h e a t  a t  cons tan t  p re s su re  
P 

Examination of Eq. (2-21)  r e v e a l s  t h a t  t h e  p red ic t ed  TS, as t o  be 

expected, i s  a func t ion  of t h e  r a d i a l  p o s i t i o n  and t h e  phys ica l  

p r o p e r t i e s  of t h e  exhaust gas.  

r ,  it decreases  wi th  decreas ing  gas  dens i ty ,  temperature ,  and v i s c o s i t y ,  

which are  a l l  func t ions  of r a d i a l  pos i t ion .  

r a t e  of decrease of t h e s e  t h r e e  p rope r t i e s  wi th  inc reas ing  r a d i u s  

i n d i c a t e s  t h a t  f o r  l a r g e  va lues  of r, T approaches zero.  The r e l a t i o n -  

s h i p  between Fs and Ff f o r  a t y p i c a l  impingement crater  i s  shown i n  

Figure 2-4. 

While TS would appear t o  inc rease  wi th  

Carefu l  a n a l y s i s  of t h e  

S 

As i nd ica t ed  by Figure  2-4, i n  t h e  v i c i n i t y  of t h e  s t agna t ion  

p o i n t ,  t h e  shear  f o r c e  is  less than t h e  s t a t i c  f r i c t i o n  force .  As a 

r e s u l t  of t h i s  i n e q u a l i t y ,  t h e  c r a t e r  i s  i n i t i a l l y  annular  i n  shape 

( r e f s .  1, 3, 5, and 8).  Gradually,  a s  t h e  impingement process  cont inues ,  

t h e  c e n t r a l  po r t ion  of  t h e  annulus i s  eroded away, leav ing  t h e  more 

f a m i l i a r  bowl-shaped crater.  

15 



. 

FIGURE 2-4. RELATIONSHIP B E V E E N  F AND F FOR A TYPICAL 
S f IMPINGEMENT CRATER 
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3 .O DISCUSSION OF RESULTS 

Based on a c a r e f u l  examination of t he  impingement phenomenon, 

t h e r e  appear  t o  be t h r e e  types  of hazards which might occur  as  a 

r e s u l t  of dus t  o r  d e b r i s  being set i n  motion by t h e  exhaust gases  of 

t h e  MFS. These hazards a re :  (1) decreased v i s b i l i t y  during a scen t  

o r  descent  of t h e  MFS due t o  t h e  cloud of dus t /deb r i s ,  ( 2 )  dus t  o r  

d e b r i s  s t r i k i n g  some por t ion  of t he  MFS, and (3)  dus t  o r  d e b r i s  

s t r i k i n g  equipment o r  personnel  on t h e  lunar  s u r f a c e  i n  t h e  v i c i n i t y  

of t h e  p o i n t  of impingement. 

The f i r s t  hazard l i s t e d  was inves t iga t ed  i n  r e fe rence  6. The 

r e s u l t s  of r e fe rence  6 c l e a r l y  i n d i c a t e  t h a t  some decrease in v i s i b i l i t y  

w i l l  occur ,  but t h i s  w i l l  be temporary and w i l l  n o t  be as severe as 

would occur  i n  t h e  presence of an atmosphere such as  t h a t  of Ear th .  

Because of t i m e  and manpower l i m i t a t i o n s ,  coupled wi th  t h e  complexity 

of t h e  problem, no at tempt  was made i n  t h e  present  s tudy t o  p r e d i c t  

t h e  degree of reduced v i s i b i l i t y .  

toward c a l c u l a t i n g  t h e  n a t u r e  of the second and t h i r d  hazards .  

In s t ead ,  major a t t e n t i o n  w a s  d i r e c t e d  

3.1 P o s s i b i l i t y  of DustlDebris S t r i k i n g  t h e  MFS 

By means of t h e  equat ions  developed i n  Sec t ion  2.0, t h e  path of 

p a r t i c l e s  i n  t h e  v i c i n i t y  of t h e  MFS dur ing  ascent  o r  descent  was 

ca l cu la t ed .  

select  appropr i a t e  va lues  of var ious parameters  c h a r a c t e r i s t i c  of t h e  

MFS. These parameters and t h e  va lues  s e l e c t e d  a r e  presented  i n  Table 

3-1. The angle  B was he ld  a t  50° b e c a u s e t h i s  r e p r e s e n t s  t h e  maximum 

I n  ca r ry ing  out  t hese  c a l c u l a t i o n s  it w a s  necessary t o  

17 



TABLE 3-1 

Selected Values of MFS Parameters 

Parameters 

Diameter of nozzle (de) 

Expansion ratio (E )  

Mach number at exit (M,) 

Ration of specific heats (y) 

Thrust (F) 

Mixture ratio (M.R.) 

Specific Impulse (I ) 
SP 

Chamber pressure (P ) 

Chamber temperature (Tc) 

Maximum diameter of MFS 

Number of rocket engines 

C 

18 

Value 

5.81 in 

40 

5.5 

1.26 

100 lb 

1.6 

295 sec 

85 psia 

5542 OR 

9.0 ft 

5 



value  f o r  t h i s  angle  which i s  considered t o  be appropr i a t e  f o r  t h e  

l u n a r  dus t .  

f o r  va r ious  crater r a d i i  and he ights ,  r e spec t ive ly .  I n  both f i g u r e s ,  

i n  o rde r  t o  ensure t h a t  t h e  upper l i m i t  t o  such pa ths  were e s t a b l i s h e d ,  

t h e  va lue  of t h e  entrainment c o e f f i c i e n t  was set  equal  t o  t h e  r e c i p r o c a l  

of t h e  square r o o t  of t h e  gas  dens i ty  a t  t h e  c r a t e r  l i p .  

by t h e s e  f i g u r e s  t h e  p o s s i b i l i t y  of d u s t / d e b r i s  s t r i k i n g  t h e  MFS i s  

g r e a t e s t  a t  low a l t i t u d e s  wi th  small crater r a d i i .  

F igures  3-1 and 3-2 r ep resen t  t h e  p a t h s  of p a r t i c l e s  

As i n d i c a t e d  

The c r i t i c a l  he ight  a t  which the re  i s  a s t rong  p r o b a b i l i t y  of 

d u s t / d e b r i s  s t r i k i n g  t h e  MFS i s  presented i n  F igure  3-3. 

been set  equal  t o  50". 

of t h e  MFS was taken t o  be n ine  f ee t .  As before ,  t h e  entrainment  

c o e f f i c i e n t  was s e t  equal  t o  t h e  r e c i p r o c a l  of t h e  square r o o t  of t h e  

gas  d e n s i t y  a t  t h e  crater  l i p .  These c r i t i ca l  he igh t s  on ly  occur when 

t h e  c r a t e r  r ad ius  i s  l e s s  than 4.5 f e e t .  A t  such small he igh t s  as a re  

involved,  t h e  c r a t e r  r ad ius  w i l l  q u i t e  l i k e l y  exceed t h i s  l i m i t i n g  

va lue ,  e s p e c i a l l y  during descent .  For t h i c k  l a y e r s  of d u s t ,  o r  dur ing  

a s c e n t  from an  undis turbed sur face ,  however, impingement on t h e  MFS 

appea r s  l i k e l y  t o  occur.  

Again 6 has 

As i nd ica t ed  i n  Table 3-1, t h e  maximum diameter 

A c a r e f u l  s tudy of F igures  3-1, 3-2,  and 3-3 i n d i c a t e s  t h a t  t h e r e  

i s  a l s o  t h e  p o s s i b i l i t y  t h a t  t h e  p a r t i c l e s  w i l l  s t r i k e  ver t ica l  luna r  

s u r f a c e s ,  such a s  l a r g e  c r a t e r  wal ls .  A r i coche t ing  e f f e c t  could then 

occur  which might r e s u l t  i n  dus t /deb r i s  s t r i k i n g  t h e  MFS from above 

o r  from t h e  s ide .  
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3 . 2  DustfDebris  Danger Zone 

The v e l o c i t i e s ,  V d ,  which t h e  d u s t / d e b r i s  could achieve were found 

t o  range a s  high as  seve ra l  thousand f e e t  per  second. By means of 

E q .  (2-16) t h e  ranges a s soc ia t ed  with such v e l o c i t i e s  were c a l c u l a t e d  

f o r  va r ious  va lues  

The maximum ranges  

presented  i n  Table 

c o e f f i c i e n t s  equal  

square r o o t  of t h e  

of B and 0 and va r ious  entrainment c o e f f i c i e n t s .  

ou t  t o  which p a r t i c l e s  may be p ro jec t ed ,  a re  

3 - 2  f o r  0 equal t o  3 0 ° ,  4 5 O ,  and 60" wi th  entrainment  

t o  lo%, 50%, and 100% of t h e  r e c i p r o c a l  of t h e  

exhaust gas dens i ty .  I n  t h i s  t a b l e ,  t h a t  va lue  of R 

C 

C 

was used which produced t h e  maximum range. 

A s  i nd ica t ed  by Table 3-2 ,  the  danger zone extends out  t o  a 

cons iderable  d i s t ance .  I n  t h i s  regard,  heavier  p a r t i c l e s  would be 

cha rac t e r i zed  by t h e  smaller entrainment c o e f f i c i e n t s  while  l i g h t e r  

p a r t i c l e s  would tend  t o  have the  maximum value  of C . e 
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TABLE 3-2 

Dust/Debris Danger Zones 

30 229 

1144 

2290 

2.27 

47.4 

208.0 

45 -k .1 (P,) 

-4 

-4 
.5 ( P , )  

1.0 ( P , )  

3 50 

1750 

3 500 

5.3 1 

116.0 

568.0 

60 -f .1 (P,) 

-f .5 (P,) 

1.0 (*,)-& 

48 4 

4840 

9 I 1. 

236 

1230 

24 



4.0 CONCLUSIONS 

Based on t h e  m a t e r i a l  presented i n  t h e  preceding s e c t i o n  t h e  

conclus ion  i s  reached t h a t  t h e  dus t /deb r i s  set  i n  motion by t h e  

impingement on t h e  luna r  su r face  of t h e  exhaust  gases  of t h e  Manned 

F ly ing  System does r ep resen t  severa l  hazards .  This  conclusion is 

based, of course,  on t h e  assumption t h a t  t h e  luna r  su r face  i s  covered 

w i t h  dus t  and/or d e b r i s  t o  some degree. The hazards  involved inc lude  

reduced v i s i b i l i t y ,  s t r i k i n g  of the  MFS by f l y i n g  dus t /deb r i s ,  and 

s t r i k i n g  of personnel  and equipment on t h e  luna r  su r face  i n  t h e  

gene ra l  v i c i n i t y  of t h e  impingement s i te .  

Because of t h e  s i m p l i f i e d  engineer ing model employed i n  t h i s  

s tudy ,  t h e  r e s u l t s  ob ta ined  should n o t  be considered t o  be anything 

more than  a pre l iminary  e s t ima te  of t h e  n a t u r e  of t h e  impingement and 

entrainment  phenomena. 

phenomena can be made, a more advanced t h e o r e t i c a l  model must be 

developed and t e s t e d  by comparison wi th  a l l  e x i s t i n g  experimental  

da t a .  

Before t r u l y  accu ra t e  p r e d i c t i o n  of t h e s e  
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